skip to main content


Search for: All records

Creators/Authors contains: "Sheffield, Scott"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loop-ensemble$$\hbox {CLE}_{\kappa '}$$CLEκfor$$\kappa '$$κin (4, 8) that is drawn on an independent$$\gamma $$γ-LQG surface for$$\gamma ^2=16/\kappa '$$γ2=16/κ. The results are similar in flavor to the ones from our companion paper dealing with$$\hbox {CLE}_{\kappa }$$CLEκfor$$\kappa $$κin (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the$$\hbox {CLE}_{\kappa '}$$CLEκin terms of stable growth-fragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “CLE Percolations” described the law of interfaces obtained when coloring the loops of a$$\hbox {CLE}_{\kappa '}$$CLEκindependently into two colors with respective probabilitiespand$$1-p$$1-p. This description was complete up to one missing parameter$$\rho $$ρ. The results of the present paper about CLE on LQG allow us to determine its value in terms ofpand$$\kappa '$$κ. It shows in particular that$$\hbox {CLE}_{\kappa '}$$CLEκand$$\hbox {CLE}_{16/\kappa '}$$CLE16/κare related via a continuum analog of the Edwards-Sokal coupling between$$\hbox {FK}_q$$FKqpercolation and theq-state Potts model (which makes sense even for non-integerqbetween 1 and 4) if and only if$$q=4\cos ^2(4\pi / \kappa ')$$q=4cos2(4π/κ). This provides further evidence for the long-standing belief that$$\hbox {CLE}_{\kappa '}$$CLEκand$$\hbox {CLE}_{16/\kappa '}$$CLE16/κrepresent the scaling limits of$$\hbox {FK}_q$$FKqpercolation and theq-Potts model whenqand$$\kappa '$$κare related in this way. Another consequence of the formula for$$\rho (p,\kappa ')$$ρ(p,κ)is the value of half-plane arm exponents for such divide-and-color models (a.k.a. fuzzy Potts models) that turn out to take a somewhat different form than the usual critical exponents for two-dimensional models.

     
    more » « less